Name: \qquad
\qquad

FINAL REVIEW ~ UNIT 8: Proportions \downarrow Similarity

1. Solve each proportion for x.
a. $\frac{5}{4}=\frac{x}{20}$
b. $\frac{9}{3}=\frac{x+4}{18}$
c. $\frac{4 x-2}{6}=\frac{5 x+3}{8}$
d. $\frac{x}{27}=\frac{3}{x}$
e. $\frac{50}{2 x}=\frac{x}{16}$
f. $\frac{2 x}{15}=\frac{14.4}{3 x}$
2. An alien from outer space has stumbled upon a very large tree after landing on earth. The alien is 5.5 ft tall and has an 8 ft shadow. If the tree has a 32 ft shadow, find its height.

LABEL:

$\mathrm{h}=$ \qquad
3. A car travels 456 miles on 14 gallons of gas. How many gallons of gas does the van need to travel 1,140 miles? WORK:
Number of gallons $=$ \qquad
4. A pizzeria makes 4 pizzas every 20 minutes. How many pizzas will the pizzeria make in 75 minutes?

WORK:
Number of Pizzas $=$ \qquad
5. Given $\Delta \mathrm{JKL} \sim \Delta \mathrm{MNO}$, find MO and the similarity ratio.

Similarity Ratio = \qquad
6. Given $\Delta \mathrm{QRS} \sim \Delta \mathrm{TUV}$, find VU and the similarity ratio.

$X=$ \qquad
$\mathrm{VU}=$ \qquad
Similarity Ratio = \qquad
7. Given $W X Y Z \sim R S T V$, find $R S$ and the similarity ratio.

WORK:

$\mathrm{X}=$ \qquad
$R S=$ \qquad
Similarity Ratio = \qquad
8. Given RSTV ~ CDFG, find FG and the similarity ratio.

$\mathrm{X}=$
$D C=$ \qquad
Similarity Ratio $=$ \qquad

FINAL REVIEW ~ UNIT 9: Pythagorean Theorem $\$$ Special Right Triangles
Use the Pythagorean Theorem to find the length of each missing side in simplest radical form.
1.

$\mathrm{MN}=$ \qquad
Pythagorean Triple? \qquad
2.

$A C=$ \qquad
Pythagorean Triple? \qquad
3.

WORK:

WORK:

WORK:

QS = \qquad
Pythagorean Triple? \qquad

Use Special Right Triangles to find the values of x and y in simplest radical form.
4.

$$
x=
$$

WORK:

$y=$ \qquad
5.

$x=$ \qquad
WORK:

6.

$\mathrm{X}=$ \qquad
$y=$ \qquad
7.

$X=$ \qquad
$y=$ \qquad
8.

$x=$ \qquad
WORK:

WORK:

$y=$ \qquad
9. Classify each triangle given its side lengths.

Side lengths: 25, 35, 45
A. Acute
B. Right
C. Obtuse

Side lengths: 11, 50, 51
A. Acute
B. Right
C. Obtuse

Side lengths: 4, 8, 7 $\sqrt{2}$
WORK:
A. Acute
B. Right
C. Obtuse

Side lengths: $5 \sqrt{3}, 10,5 \sqrt{7}$
WORK:
A. Acute
B. Right
C. Obtuse

WORK:

1. Use $\triangle C D F$ to find each ratio. Round to the nearest hundredth.

$$
\begin{array}{ll}
\sin \angle F= & \sin \angle D= \\
\cos \angle F= & \cos \angle D= \\
\tan \angle F= & \tan \angle D=
\end{array}
$$

2. The angle of elevation from Sarah to the top of a hill is 49°. If Sarah is 400 horizontal feet from the base of the hill, find the height of the hill. Round to the nearest hundredth.

LABEL:
WORK:

Height $=$ \qquad
3. A 12.5 m tall telephone pole casts an 18 m long shadow. Find the angle of elevation from the end of the shadow to the top of the telephone pole. Round to the nearest hundredth.

LABEL:
WORK:

Angle of Elevation = \qquad
4. A ladder with an angle of elevation of 78° is 5 horizontal feet from the base of a building. Find the length of the ladder. Round to the nearest hundredth.

LABEL:
WORK:

Length of the Ladder $=$ \qquad
5. Susie is in a hot-air balloon 340 ft above the ground. She sees her car at an angle of depression of 36°. Determine Susie's horizontal distance to her car. Round to the nearest hundredth.

LABEL:
WORK:

Horizontal Distance $=$ \qquad
6. Kate is in a ski lift 208 yards high off the ground. If she has traveled a horizontal distance of 1000 yards, determine her angle of depression to the ground. Round to the nearest hundredth.

WORK:

Angle of Depression = \qquad
7. An air traffic controller is 120 feet high in his tower. He observes an airplane on the runway at an angle of depression of 19°. Find his horizontal distance to the airplane. Round to the nearest hundredth.
LABEL:
WORK:

Horizontal Distance = \qquad
8. A motorcycle ramp is 5 ft high above the ground and has an angle of elevation of 7°. Find the length of the ramp. Round to the nearest hundredth.

LABEL:

Length of the Ramp = \qquad

1. Tell whether each polygon is REGULAR / IRREGULAR and CONCAVE / CONVEX.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Find the measure of the SUM of interior angles for a regular decagon.

SUM of interior $=$ \qquad WORK:
3. Find the measure of ONE interior angle for a regular 24-gon.

ONE interior = \qquad WORK:
4. Find the measure of ONE exterior angle for a regular 30-gon.

ONE exterior = \qquad WORK:
5. Given parallelogram $\mathrm{LMNO}, \mathrm{m} \angle \mathrm{OLM}=(3 x-12)^{\circ}$ and $\mathrm{m} \angle \mathrm{NOL}=(2 x+7)^{\circ}$, find $\mathrm{m} \angle \mathrm{LMN}$.
$x=$ \qquad LABEL:
WORK:
$\mathrm{m} \angle \mathrm{LMN}=$ \qquad

6. Given isosceles trapezoid QRST, $m \angle Q R S=(3 x+9)^{\circ}$ and $m \angle R S T=(6 x-15)^{\circ}$, find x.
\qquad
$\mathrm{X}=$
LABEL:
WORK:

7. Given kite $A B C D$, find $A C$.
$A E=$ \qquad
$E C \approx$ \qquad
AC = \qquad

8. Given rhombus $\mathrm{MNOP}, \mathrm{MN}=4 \mathrm{x}-1$ and $\mathrm{NO}=3 \mathrm{x}+12$, find OP .

$$
x=
$$

LABEL:
WORK:
$\mathrm{OP}=$ \qquad

9. Given the hexagon, find $\mathrm{m} \angle \mathrm{C}$.

$$
x=
$$

$\mathrm{m} \angle \mathrm{C}=$ \qquad
10. Given the hexagon, find x.

WORK:

$$
X=
$$

\qquad

FINAL REVIEW ~ UNIT 12: 2D Figures (Area \downarrow Perimeter)

1. Given an area of $118.25 \mathrm{in}^{2}$ for the triangle, find b .
$b=$ \qquad

b
WORK:
2. Find the circumference and area of $\odot P$. Express answer in terms of π.

Area $=$ \qquad
3. Given the area of a circle is $49 \pi \mathrm{ft}^{2}$, find its circumference. Express answer in terms of π.
$r=$ \qquad WORK:
Circumference $=$ \qquad
4. Find the area of the regular hexagon. Round to the nearest hundredth.
$a \approx$ \qquad WORK:
$P=$ \qquad
Area $=$ \qquad

5. Find the area of the rectangle.
\qquad
=
$\mathrm{h}=$ \qquad
Area $=$ \qquad

WORK:
6. Find the perimeter and area of the rectangle. Express answer in terms of x.
Perimeter $=$ \qquad

Area $=$ \qquad

7. Given $P R=(x+4)$ in and $Q S=(x-15)$ in, find the area of the rhombus. Express answer in terms of x.

Area $=$ \qquad
 WORK:
8. Find the area of the kite.
$\mathrm{d}_{1}=$ \qquad
$\mathrm{d}_{2}=$ \qquad
Area $=$ \qquad

WORK:

9. Find the perimeter and area of the composite figure.

WORK:

Perimeter =

\qquad
Area $=$ \qquad
10. Find the area of the shaded region. Round to the nearest hundredth, if necessary.

WORK:

Area of $1^{\text {st }}$ Figure $=$ \qquad
Area of $2^{\text {nd }}$ Figure $=$ \qquad
Area of Shaded Region $=$ \qquad

1. Match each net with its solid.
$1 \rightarrow$ \qquad $6 \rightarrow$ \qquad
$2 \rightarrow$ \qquad $7 \rightarrow$ \qquad
$3 \rightarrow$ \qquad $8 \rightarrow$ \qquad
$9 \rightarrow$ \qquad
$5 \rightarrow$ \qquad $10 \rightarrow$

Find the SURFACE AREA of each figure.
3. Rectangular Prism WORK
$P=$ \qquad
$\mathrm{h}=$ \qquad

$B=$ \qquad
$L=$ \qquad
Surface Area $=$ \qquad
4. Regular Hexagonal Prism WORK
$P=$ \qquad
$\mathrm{h}=$ \qquad

$B=$ \qquad
$\mathrm{L}=$ \qquad
Surface Area = \qquad
5. Square Pyramid

WORK:
$\ell=$ \qquad
$\mathrm{P}=$ \qquad
$B=$ \qquad

$\mathrm{L}=$ \qquad
Surface Area = \qquad
6. Cylinder
$r=$ \qquad
$\mathrm{h}=$ \qquad WORK
$L=$ \qquad
Surface Area = \qquad

Find the VOLUME of each figure.
7. Trapezoidal Prism WORK
$B=$ \qquad
$\mathrm{h}=$ \qquad
Volume = \qquad
8. Cone

WORK
$r=$ \qquad
$\mathrm{h}=$ \qquad
Volume = \qquad
9. Sphere

WORK
$r=$ \qquad
Volume = \qquad
10. Composite Figure

WORK
V of $1^{\text {st }}$ Figure $=$ \qquad
V of $2^{\text {nd }}$ Figure $=$ \qquad
Total Volume = \qquad
11. Composite Figure

WORK

